Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction.

Identifieur interne : 001308 ( Main/Exploration ); précédent : 001307; suivant : 001309

Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction.

Auteurs : Timo Van Der Zwan [Canada] ; Jinguang Hu [Canada] ; Jack N. Saddler [Canada]

Source :

RBID : pubmed:28691220

Descripteurs français

English descriptors

Abstract

Effective enzyme-mediated viscosity reduction, disaggregation, or "liquefaction," is required to overcome the rheological challenges resulting from the fibrous, hygroscopic nature of lignocellulosic biomass, particularly at the high solids loadings that will be required for an economically viable process. However, the actual mechanisms involved in enzyme-mediated liquefaction, as determined by viscosity or yield stress reduction, have yet to be fully resolved. Particle fragmentation, interparticle interaction, material dilution, and water-retention capacity were compared for their ability to quantify enzyme-mediated liquefaction of model and more realistic pretreated biomass substrates. It was apparent that material dilution and particle fragmentation occurred simultaneously and that both mechanisms contributed to viscosity/yield stress reduction. However, their relative importance was dependent on the nature of the biomass substrate. Interparticle interaction and enzyme-mediated changes to these interactions was shown to have a significant effect on slurry rheology. Liquefaction was shown to result from the combined action of material dilution, particle fragmentation, and alteration of interactions at particle surfaces. However, the observed changes in water retention capacity did not correlate with yield stress reduction. The relative importance of each mechanism was significantly influenced by the nature of the biomass substrate and its physicochemical properties. An ongoing challenge is that mechanisms, such as refining, which enhance enzyme accessibility to the cellulosic component of the substrate, are detrimental to slurry rheology and will likely impede enzyme-mediated liquefaction when high substrate concentrations are used.

DOI: 10.1002/bit.26381
PubMed: 28691220


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction.</title>
<author>
<name sortKey="Van Der Zwan, Timo" sort="Van Der Zwan, Timo" uniqKey="Van Der Zwan T" first="Timo" last="Van Der Zwan">Timo Van Der Zwan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jinguang" sort="Hu, Jinguang" uniqKey="Hu J" first="Jinguang" last="Hu">Jinguang Hu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saddler, Jack N" sort="Saddler, Jack N" uniqKey="Saddler J" first="Jack N" last="Saddler">Jack N. Saddler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28691220</idno>
<idno type="pmid">28691220</idno>
<idno type="doi">10.1002/bit.26381</idno>
<idno type="wicri:Area/Main/Corpus">001252</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001252</idno>
<idno type="wicri:Area/Main/Curation">001252</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001252</idno>
<idno type="wicri:Area/Main/Exploration">001252</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction.</title>
<author>
<name sortKey="Van Der Zwan, Timo" sort="Van Der Zwan, Timo" uniqKey="Van Der Zwan T" first="Timo" last="Van Der Zwan">Timo Van Der Zwan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jinguang" sort="Hu, Jinguang" uniqKey="Hu J" first="Jinguang" last="Hu">Jinguang Hu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saddler, Jack N" sort="Saddler, Jack N" uniqKey="Saddler J" first="Jack N" last="Saddler">Jack N. Saddler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology and bioengineering</title>
<idno type="eISSN">1097-0290</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption, Physicochemical (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Lignin (chemistry)</term>
<term>Lipase (chemistry)</term>
<term>Models, Chemical (MeSH)</term>
<term>Populus (chemistry)</term>
<term>Solutions (chemistry)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Viscosity (MeSH)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Absorption physico-chimique (MeSH)</term>
<term>Activation enzymatique (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Lignine (composition chimique)</term>
<term>Modèles chimiques (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Solutions (composition chimique)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Triacylglycerol lipase (composition chimique)</term>
<term>Viscosité (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lignin</term>
<term>Lipase</term>
<term>Solutions</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Eau</term>
<term>Lignine</term>
<term>Populus</term>
<term>Solutions</term>
<term>Triacylglycerol lipase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Absorption, Physicochemical</term>
<term>Biomass</term>
<term>Enzyme Activation</term>
<term>Models, Chemical</term>
<term>Substrate Specificity</term>
<term>Viscosity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Absorption physico-chimique</term>
<term>Activation enzymatique</term>
<term>Biomasse</term>
<term>Modèles chimiques</term>
<term>Spécificité du substrat</term>
<term>Viscosité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Effective enzyme-mediated viscosity reduction, disaggregation, or "liquefaction," is required to overcome the rheological challenges resulting from the fibrous, hygroscopic nature of lignocellulosic biomass, particularly at the high solids loadings that will be required for an economically viable process. However, the actual mechanisms involved in enzyme-mediated liquefaction, as determined by viscosity or yield stress reduction, have yet to be fully resolved. Particle fragmentation, interparticle interaction, material dilution, and water-retention capacity were compared for their ability to quantify enzyme-mediated liquefaction of model and more realistic pretreated biomass substrates. It was apparent that material dilution and particle fragmentation occurred simultaneously and that both mechanisms contributed to viscosity/yield stress reduction. However, their relative importance was dependent on the nature of the biomass substrate. Interparticle interaction and enzyme-mediated changes to these interactions was shown to have a significant effect on slurry rheology. Liquefaction was shown to result from the combined action of material dilution, particle fragmentation, and alteration of interactions at particle surfaces. However, the observed changes in water retention capacity did not correlate with yield stress reduction. The relative importance of each mechanism was significantly influenced by the nature of the biomass substrate and its physicochemical properties. An ongoing challenge is that mechanisms, such as refining, which enhance enzyme accessibility to the cellulosic component of the substrate, are detrimental to slurry rheology and will likely impede enzyme-mediated liquefaction when high substrate concentrations are used.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28691220</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>12</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-0290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>114</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2017</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>Biotechnology and bioengineering</Title>
<ISOAbbreviation>Biotechnol Bioeng</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction.</ArticleTitle>
<Pagination>
<MedlinePgn>2489-2496</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/bit.26381</ELocationID>
<Abstract>
<AbstractText>Effective enzyme-mediated viscosity reduction, disaggregation, or "liquefaction," is required to overcome the rheological challenges resulting from the fibrous, hygroscopic nature of lignocellulosic biomass, particularly at the high solids loadings that will be required for an economically viable process. However, the actual mechanisms involved in enzyme-mediated liquefaction, as determined by viscosity or yield stress reduction, have yet to be fully resolved. Particle fragmentation, interparticle interaction, material dilution, and water-retention capacity were compared for their ability to quantify enzyme-mediated liquefaction of model and more realistic pretreated biomass substrates. It was apparent that material dilution and particle fragmentation occurred simultaneously and that both mechanisms contributed to viscosity/yield stress reduction. However, their relative importance was dependent on the nature of the biomass substrate. Interparticle interaction and enzyme-mediated changes to these interactions was shown to have a significant effect on slurry rheology. Liquefaction was shown to result from the combined action of material dilution, particle fragmentation, and alteration of interactions at particle surfaces. However, the observed changes in water retention capacity did not correlate with yield stress reduction. The relative importance of each mechanism was significantly influenced by the nature of the biomass substrate and its physicochemical properties. An ongoing challenge is that mechanisms, such as refining, which enhance enzyme accessibility to the cellulosic component of the substrate, are detrimental to slurry rheology and will likely impede enzyme-mediated liquefaction when high substrate concentrations are used.</AbstractText>
<CopyrightInformation>© 2017 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>van der Zwan</LastName>
<ForeName>Timo</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jinguang</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-8033-7102</Identifier>
<AffiliationInfo>
<Affiliation>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saddler</LastName>
<ForeName>Jack N</ForeName>
<Initials>JN</Initials>
<AffiliationInfo>
<Affiliation>Forest Products Biotechnology and Bioenergy Group, Faculty of Forestry, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Bioeng</MedlineTA>
<NlmUniqueID>7502021</NlmUniqueID>
<ISSNLinking>0006-3592</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012996">Solutions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.3</RegistryNumber>
<NameOfSubstance UI="D008049">Lipase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D065966" MajorTopicYN="N">Absorption, Physicochemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008049" MajorTopicYN="N">Lipase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012996" MajorTopicYN="N">Solutions</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014783" MajorTopicYN="N">Viscosity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">biomass deconstruction</Keyword>
<Keyword MajorTopicYN="Y">enzymatic liquefaction</Keyword>
<Keyword MajorTopicYN="Y">lignocellulose</Keyword>
<Keyword MajorTopicYN="Y">rheology</Keyword>
<Keyword MajorTopicYN="Y">yield stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28691220</ArticleId>
<ArticleId IdType="doi">10.1002/bit.26381</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Van Der Zwan, Timo" sort="Van Der Zwan, Timo" uniqKey="Van Der Zwan T" first="Timo" last="Van Der Zwan">Timo Van Der Zwan</name>
</region>
<name sortKey="Hu, Jinguang" sort="Hu, Jinguang" uniqKey="Hu J" first="Jinguang" last="Hu">Jinguang Hu</name>
<name sortKey="Saddler, Jack N" sort="Saddler, Jack N" uniqKey="Saddler J" first="Jack N" last="Saddler">Jack N. Saddler</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001308 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001308 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28691220
   |texte=   Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28691220" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020